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It has been recognized that the snowmelt models developed in the past do not fully meet current 
prediction requirements. Part of the reason is that they do not account for the spatial variation in the 
dynamics of the spatially heterogeneous snowmelt process. Most of the current physics-based dis- 
tributed snowmelt models utilize point-location-scale conservation equations which do not represent 
the spatially varying snowmelt dynamics over a grid area that surrounds a computational node. In 
this study, to account for the spatial heterogeneity of the snowmelt dynamics, areally averaged mass 
and energy conservation equations for the snowmelt process are developed. As a first step, energy 
and mass conservation equations that govern the snowmelt dynamics at a point location are averaged 
over the snowpack depth, resulting in depth averaged equations (DAR). In this averaging, it is 
assumed that the snowpack has two layers. Then, the point location DAR are averaged over the 
snowcover area. To develop the areally averaged equations of the snowmelt physics, we make 
the fundamental assumption that snowmelt process is spatially ergodic. The snow temperature 
and the snow density are considered as the stochastic variables. The areally averaged snowmelt 
equations are obtained in terms of their corresponding ensemble averages. Only the first two 
moments are considered. A numerical solution scheme (Runge-Kutta) is then applied to solve the 
resulting system of ordinary differential equations. This equation system is solved for the amal 
mean and areal variance of snow temperature and of snow density, for the areal mean of 
snowmelt, and for the areal covariance of snow temperature and snow density. The developed 
model is tested using Scott Valley (Siskiyou County, California) snowmelt and meteorological 
data. The performance of the model in simulating the observed areally averaged snowmelt is 
satisfactory. 
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1. Introduction 

Snow constitutes an important part of the water resources in many countries. Because it 
accumulates during the winter and melts in the spring, it is a strategic resource for irrigated 
agriculture. Therefore, it is critical to have accurate snowmelt runoff estimates. Snowmelt 
runoff estimation is needed also for flood warning, reservoir management, and hydro- 
electric power planning. 

Spatial representation of the snowmelt process is a research problem yet to be solved. 
Although the physics of the snow cover at a point scale is well understood (Anderson, 
1976; Dunne et al., 1976; Male and Gray, 1981; Morris, 1983; Kondo and Yamazaki, 
1990), very few studies deal with spatially distributed snowmelt models. 

Morris (1985) pointed out that many basin-scale snow models utilize point-location- 
scale conservation equations. However, such an equation system conserves the mass and 
energy only at a point location. Let one place a computational grid network with a spatial 
resolution of, say 100 m, over a watershed area to compute the snowmelt process. Then if 
one utilizes point-location-scale conservation equations for the computation of snowmelt 
at each nodal point of this grid network, one makes the fundamental assumption that the 
snowmelt process is spatially homogeneous over the 100 m x 100 m area which surrounds 
each computational node. However, the snowmelt over a 100 m x 100 m area is spatially 
heterogeneous. If one moves a few meters from the location of the computational node, the 
snowmelt rate could be very different from that at the node. Therefore, under the spatial 
heterogeneity of the snowmelt dynamics, what is computed by point-location-scale con- 
servation equations at a computational node represents only the snowmelt dynamics at that 
point location, and may not necessarily represent the spatially heterogeneous melt rates 
over the grid area that surrounds that node. To better approximate the spatial homogeneity 
of snowmelt over each area, surrounding each node, one may take a much finer spatial 
resolution for the computational grid network (less than 10 m). However, in that case the 
hydrologist would end up with the great difficulty of estimating the point-location-scale 
parameters over several hundred thousand computational nodal locations over the snow- 
melt computation area. Such an approach would require a very large amount of spatially 
distributed data. It would also require the computation of the snowmelt process over 
several hundred thousand nodes at each time increment. 

One approach to alleviate these difficulties in the application of point-location-scale 
conservation equations to the snowmelt computation over a large ama is the development 
of areally averaged conservation equations for the snowmelt physics. As the model, 
evaluated at each node of a computational grid, needs to be representative of the snowmelt 
dynamics taking place over the grid ares which surrounds a computational node, it is 
plausible to integrate the mass and energy conservation equations of snowmelt over such a 
grid area, and use these equations at the node surrounded by the area. As an&averaging 
amounts to integration of snowmelt over an area and dividing the integral by the size of the 
area, such areally averaged snowmelt conservation equations would then represent the 
areally averaged snowmelt process over the area which surrounds each computational 
node. In this way, the scale of the conservation equations will be consistent with the 
scale of each grid area. Furthermore, as will be shown in the following developments 
of such an areally averaged model, the emerging parameters of such a model become 
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areally averaged quantities themselves, being consistent with the size of the grid area 
which is represented at a computational node. With this approach, one could take as large a 
grid area as possible as long as the ergo&city of the snowmelt process is satisfied over such 
a grid area. In this manner, one could realize significant savings both in parameter estima- 
tion work and in computation of the snowmelt over an area. 

One may pose the question of how an areally averaged snowmelt model can describe the 
spatial variation of snowmelt over any computational grid area. As will be shown in the 
following model developments, the areal variation of the snowmelt process is described by 
the areal variance and area1 covariance equations of the snowmelt dynamics. Therefore, 
the areally averaged conservation equations for the snowmelt process consist of not only 
the areal mean but also the areal variance and areal covariance of the state variables of the 
snowmelt process. 

2. Depth averaging of the governing equations 

2.1. Point equations 

Snow is a three-phase system composed of a mixture of water (gas, liquid and ice) and 
air in proportions that depend on the energy balance. Source energy is provided internally 
by latent heat owing to phase change and externally by heat exchange with the atmosphere 
and by solar radiation. Energy is stored as heat in each phase and is subject to advection 
within the snowpack. 

The point-scale equations for the conservation of mass and energy (over differential 
control volumes) were formulated by Morris (1982,1983). Subscripts i, w and v are used 
to denote ice, water and vapor. The point-scale mass continuity equation for the com- 
ponent k is (Morris, 1983) 

a: a 
$&ok)+ hkekvk)= CMkj az i 

The equation for the conservation of energy is (Morris, 1982) 

(1) 

(2) 

where & is density of component k (g cm-‘); 8k is volume per unit volume of snow for 
component k; vL is velocity in the vertical direction for component k (cm h-l); t is time (h); 
Mb is mass of component k produced per unit volume per unit time by a phase change from 
component J (g cme3 h-l); (CP)k is specific heat at constant pressure of component k 
(cal g-’ “C-l); T is temperature of the mixture (‘C); K is thermal conductivity 
(cal h-t cm-’ “C-‘); Q. is net radiation energy (cal cme2); Lb is latent heat released by 
transformation Mu (ml g-l). (Every term in the mass equation, Eq. (l), is given in 
g cmV3 h-‘. In the energy equation, Eq. (2), terms are in cal cm3 h-l.) 
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T 

Fig. 1. Snowpack model. 

Several assumptions are made often to simplify these equations. It is usually assumed 
that the ice matrix is at rest, i.e. vi = 0. Therefore, melting or snowfall do not involve a 
movement of the ice grains in the snowpack. Additionally, the heat capacity of the gaseous 
phase is very small compared with those of ice and water and may be ignored. Also, the 
pressure of the moist air can be considered constant, With these assumptions, the Eq. (2) 
now becomes 

(3) 

To average the energy equation over the snow depth, an active layer model is adopted. It is 
assumed that the temperature of the snow varies linearly with the depth until the freezing 
level Z is reached (Kondo and Yamazaki, 1990). Below that, the temperature remains 
constant at 0°C. The freezing depth layer will move vertically responding to the energy 
balance. It is assumed that the water content W of the snowpack is zero above Z and that it 
takes a constant value W, below Z as shown in Fig. 1. The linear relationship between T 
and Z allows us to write the average snow depth temperature of the snowpack 
i-, as F= f T,. 

A constitutive relationship can be expressed by the following equation of state of the 
snowpack: 

W =0 for T < 0°C 

W=W,, for T=O”C (4) 

where W. is the gravitational water content of the snow, defined as the ratio of mass of 
liquid water to the mass of wet snow. As 8, is a volume variable, one can take 

e,p, = W,P, (5) 

If the air mass in the snow is ignored, it can be assumed for dry snow that the mass of ice is 
equal to the mass of snow; 

4Pi =Ps (6) 
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A positive energy balance will result in a shallower freezing depth 2 (see Fig. 1) by which 
fusion heat will be used to produce water from a dry snow. When the whole snow profile D 
reaches a saturation state (z = 0 and T = O°C) any additional heat surplus M will yield 
snowmelt contributing to the runoff. The relationship between the snowmelt energy M and 
the water production by the snowpack, M, can be written as 

M,= 
A4 

WfPwU - WON (cmw 3 c%--~ h-‘) (7) 

where (1 - Wo) is defined by DeVries and Franke (1988) as the thermal quality of the 
snow. It represents the heat necessary to produce a given amount of melt water from the 
existing snow, as the same quantity of melt from pure ice. 

2.2. Integration of energy equation through the depth of snowpack 

Conservation equations averaged over the snow depth usually deal only with the mean 
properties of the snowpack and do not consider spatial variability occurring within the 
pack. However, by considering two layers, the main properties of the snow may be 
captured. 

Integration of the point-scale energy equation, Eq. (3), throughout the depth of the 
snowpack is performed in two steps: (1) from z=O (surface) to z = Z(t); (2) from 
z=Z(t) to z = D, the snowpack depth. Given that one of the integration limits is changing 
with time, the Liebnitz rule was used in the integration. In Eq. (3) (Cp)i and the mean 
vertical density 8, for the snow cover profile are considered constant. The energy fluxes 
(negative downward) at the top of the pack are given by 

- (8~0 + 4. - hut + H - LEv + Qp) 
where SW,-, is the incoming shortwave solar radiation, Iin - I,, is the incident minus 
reflected longwave radiation, H is the sensible heat exchange with the atmosphere by 
turbulent transfer, E, is the evaporation, L, is the latent heat of vaporization, and QP is 
the heat convected to the pack by precipitation. At the bottom of the pack the energy fluxes 
are given by 

where A4 has aheady been defined as the energy required to produce snowmelt, Q, is the 
heat exchange with the soil (negative downward) and wo is the attenuated shortwave 
radiation at the bottom. Applying the assumptions made for the two-layer model of Fig. 1 
and neglecting the convection of energy owing to variations in the snowpack height as 
well as the latent heat of sublimation-solidification by assuming MiLi, = 0, the vertical 
integration of the energy equation, Eq. (3). leads to the following depth-averaged energy 
equation for the snowpack 

SWo-~D+Zi”-Z~,+H-~E~-M+Q~-Q~ 

It is difficult to estimate the heat QP convected by rain. Kondo and Yamazaki (1990) 
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Fig. 2. Energy exchanged at the snow surface. 

considered that it is small enough to be ignored, i.e. 10 mm of rain at 10°C can melt only 
1 mm day-’ in water equivalent. The heat exchanged with the ground is even less except in 
early winter (Kojima and Motoyama, 1985). Experimental results presented by Kuz’min 
(l%l) show that the calculated heat exchange with the ground never exceeds 
10 cal cm-’ day-‘. Morris (1985) also indicated that the heat exchange with the ground 
by conduction is very small compared with the energy fluxes at the upper boundary. The 
use of a constant value of O-10 cal cm-’ day-’ was suggested. Similar conclusions were 
reached by Smith (1974). Neglecting the rain and ground heat exchanges, Eq. (8) becomes 

where SW is the net shortwave radiation component absorbed by the pack, and 

G 1 is the energy exchanged across the upper boundary, excluding the net incoming short- 
wave radiation. As will be described later, G , can be approximated by a linear function of 
the surface snow temperature. 

The right-hand side of Eq. (9) includes the driving force terms that represent the energy 
exchanged by the snowpack. This energy may increase the temperature of the upper layer 
of the pack (first left-hand side term) and/or raise the freezing depth layer (second left- 
hand side term) by melting dry snow. The snowmelt energy M is taken as zero except when 
?’ = 0°C and Z = 0. A relationship between T and Z can be obtained from the heat flow 
balance in the surface layer as shown in Fig. 2. If a heat balance is performed on an 
infinitesimally thin snow layer according to Fig. 2, one can take (Kondo and Yamazaki, 
1990) 

(10) 

It should be noted that the shortwave radiation is not included. In fact, SW is either 
transmitted or reflected in this ‘skin’ layer. 

The effective thermal conductivity X, is used in place of the thermal conductivity, to 
allow for the thermal effect of the transport of water to be taken into account indirectly. 
This term captures most of the heat transferred owing to the vapor carried by a temperature 
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gradient. On the other hand, as it is virtually impossible to separate the effects of the 
conduction and diffusion processes, it is customary to express the measured value as an 
effective conductivity of the snowpack. 

As the temperature gradient is assumed to be linear in the adopted snowpack model, the 
snow surface temperature Ts is expressed as T, = 2T (Fig. 1). Therefore, Eq. (10) can be 
written in terms of t as 

(11) 

Although A, depends on the state of the crystalline structure of the snow, most of the 
experimental determination of h, has been correlated solely with snow density pS. A 
quadratic relation of the form 

&=kr +k& (12) 

can be adopted based on the experimental results obtained by several investigators (see 
e.g. Yen, 1%2). 

2.3. Density changes in the snowpack 

As the changes in the density that are controlled by metamorphic processes are not fully 
understood, here only the changes owing to the compacting and temperature gradient 
processes are considered. These two processes have been quantified and validated in the 
last 40 years by Bader et al. (1939). Mellor (1964). Kojima (1%7), Anderson (1976) and 
others. 

The seasonal compacting of snow can be estimated by the expression presented by 
Yosida (1955): 

(13) 

where w, is the weight of snow above the layer for which the density change is being 
computed, in water equivalent (cm), and 7 is the viscosity coefficient, a constant for a 
given temperature and snow density (cm h-l). T) can be calculated as the result of two 
different multiplicative effects, compacting and temperature changes: 1 = ~~7~. Kojima 
(1967) obtained from experimental measurements an expression for qC: 

rlc = rldexp(ko& (14) 

where rrc~ is the viscosity when pS is reduced to zero (cm h-‘) and k. is a constant value in 
the range 15-38 (cm’ g”). 

Mellor (1975), on the basis of observations of natural snow in polar regions, developed 
an equation for the viscosity coefficient qt. This expression included the temperature 
gradient effect: 

(15) 
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where A is the activation energy of snow (lo4 cal mol-I), R is the gas constant 
(2 cal mol-’ K-l), T, is the critical temperature (O’C), and q,,, is q1 at 0°C. 

For the temperatures normally experienced in areas with seasonal snow cover, (A/ 
(RZT,)) may be about 0.08 K-i according to Anderson (1976). Integration of Eq. (14) 
over the snow depth can be approximated by considering p, as the density corresponding 
to the point located at 2D/3, where D is the snowpack depth (Van der Heydt, 1991). 
Utilizing this approximation in Eq. (14) and substituting Eq. (14) and Eq. (15) into 
Eq. (13) yields 

&lo ‘exp[ - 0.08( Tc - t)]exp[ - &,] (16) 

where 70 is the viscosity coefficient at 0°C and zero density. This expression has been also 
presented by Kutchment et al. (1983) and Motovilov (1986). 

2.4. Simplified expression of the energy balance 

The net longwave radiation captured by the snowpack can be estimated by the Stefan- 
Boltzmann Law applied to the incoming and reflected energy fluxes: 

1,=0.92x 1o-*al&a~ 

where E, is snow emissivity, (I is Stefan-Boltzman constant, and T, and T, are air and snow 
temperatures, respectively. The estimation by Swinbank (1963) for atmospheric emissiv- 
ity e, was adopted here for the incoming longwave radiation. The emissivity of the snow, 
e,, takes values between 0.97 and 1.0. Applying the Taylor series, one can expand I, 
around T, to obtain 

Z,,=O.92x 10-5a~--E,a~-b,aT,3(T,-T,) (17) 

Turbulent transfers of sensible and latent heat to the atmosphere can be estimated by 
applying the aerodynamic technique (Prandtl, 1932) for one observation height: 

H =DtJ-Jz(T, - T,) (18) 

WV =Q4[e(~.) - e(TJ 
where 

(19) 

C/,P k2 Z& and D 
Dh = (In z~/zi )2 K, 

_ 0.622L P k2 K, 

‘- P(ln z~/zi)~ K, 

In Eq. (19). U, is the wind speed and e(n), the vapor pressure at temperature T, is related to 
specific humidity q by ecT) = qP/O.622, where P is the atmospheric pressure. Dh and D, are 
bulk transfer coefficients for convected heat and for latent heat transfer, respectively. In 
the expressions for Dh and D,, K,, K,, and K, are eddy diffusivities for momentum, 
sensible heat and latent heat transfers, respectively. Also, k is the von Kz%rnuln constant, 
and z2 and z I are two reference elevations in the atmosphere where observations are made. 
Values for Dh and D, have been reported by various investigators (e.g. Male and Gray, 
1981). These values are obtained by measuring the air temperature, wind velocity and 
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humidity at a reference height, assuming logarithmic variation with elevation (Businger 
et al., 1971). 

The latent heat transfer to the atmosphere, Bq. (19), can be expressed as a function of 
temperature and relative humidity. The saturated vapor pressure e& can be calculated as a 
function of temperature using the Clausius-Clapeyron equation: 

e;T,=6984.5+T[-188.9+T(2.133+T( -1.289x lo-’ 

+T[4.39x10-5+T(-8.024x10-8+6.137x10-2T)]))] 
(20) 

On the snow surface, the vapor pressure is considered to be the pressure of saturation and 
is calculated using Bq. (20) with the temperature of snow at the surface. The air vapor 
pressure can also be written as a function of the air saturated vapor pressure if h, the 
relative humidity, and T,, the air temperature, are known: 

e(r,) = e;T,)h 

Applying Bq. (20) to the snow surface and expanding around T,, one obtains 

(21) 

eiTs) = eiT.) + aein 
[ 1 F (Ts - Ta) 

T. 

Substituting Bq. (21) and Bq. (22) in Bq. (19) yields 

(22) 

Bqs. (17), (18) and (23) are linear expressions of the snow temperature T,. Therefore, the 
longwave radiation and turbulent transfer terms, denoted as Gr, can be simplified to the 
expression 

l,+H+&E,=Gr=A+BT, (24) 

where 

A=3.80859 x lO’a+8.37052 x 10’T,a+766531T,Za+3743.74T,3a 

+ 10.285~‘a+0.01506%T,5a+9.2 x 10-67$r-5554571841.0e,a 

+447174T,2e,(r+2184.0T&r+31&r+83.3938D,Uz 

+D,,TJJz+0.0122117D,T,zV,+0.000527205D,T,3U, 

+0.00000906021D,~Uz+8.11362x lo-*D,T,5Uz+3.0685x lo--” 

DeTfVz - 83_3938D,hl_J, -0.362288D,T,hU, 

+0.0122117D,T,zhU, +0.000263603D,T,3hUz +3.02007 x 10-6D,~hUz 

+2.02841 x 10-8D,T;hUz+6.137 x lo-“D,<hU, 
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and 

B= - 162771336e,a- 1788696T,e,a-6552T$,a-8T&,a 

+0.724575D,U,-2D~U,-O.o488467D,T,U,-O.~158162D,T~U, 

-0.0000241606D~T,Uz-2.02841 x lo-‘D&J,-7.3644x 10-10D,T,5Uz 

2.5. Integration of the mass balance equation through the snowpack 

The point-scale conservation of mass equation, Eq. (l), is simplified assuming that the 
snow composition remains constant. The assumption is commonly made in lumped (in 
depth) models. Neglecting the mass exchanged between ice and vapor phases(Mi, = 0), 
Eq. (1) can be written as 

zj).Mw =ww (25) 

These point-scale equations are integrated over the snowpack depth D assuming that the 
ice matrix is at rest (Vi = 0). Replacing water fluxes across the boundaries by M and P 
(where P, is precipitation rate), vapor fluxes by E, and considering Eq. (6). the depthwise 
integration of the point-scale conservation equations through the snowpack yields the 
following depth averaged mass conservation equation for the snowpack at a point location 
over a snow-covered area: 

dD 
D$,+i+=pw(P,-E-M,) 

2.4. Summa~ of averaged conservation equations over the depth of a snowpack 

The depth averaged energy equation through a snowpack at a point location over a 
snow-covered area was expressed by Eq. (9). This equation can be simplified further by 
first solving Eq. (11) for Z and then substituting the resulting expression for Z into Eq. (9). 
Then also combining Eq. (12) with Eq. (9) yields 

$= -$sw+G, -M) (27) 

where 
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In summary, the depth averaged conservation equations through a snowpack at a point 
location over a snow-covered area may be expressed by Eq. (16) and Eq. (27) for energy 
and by Eq. (26) for mass. The next step is to extend these conservation equations over a 
snow-covered area. 

3. Arenl averaging of the conservation equations 

The equations which were developed above to describe the energy and mass continuity 
represent the snowmelt dynamics at a point location in the snow cover area and character- 
ize the depth averaged properties and processes within the snow pack at that location. One 
can consider these depth averaged equations as point location equations in relation to the 
snow cover area. 

The averaging of differential equations over time or space has been traditionally 
performed by using the Leibnitz rule of differentiation. The approach that is applied 
here for averaging the point location conservation equations over the snow cover 
area is based on the perturbation of the ‘snowmelt physics’. We dan consider the point 
location equation as a perturbed mean equation. By the use of the Taylor ex@msion 
theory and ensemble averaging techniques we can obtain an approximate closed system 
of equations, depending on spatial statistical parameters of the snowmelt process. 
However, to apply the ensemble averaging technique to develop the areally averaged 
equations of the snowmelt physics, we make the fundamental assumption that the snow- 
melt process is spatially ergodic so that the ensemble averages may be equivalent to the 
areal averages. 

The energy conservation equation can now be described by Eq. (16) and Eq. (27). 
In these equations, SW is given, G, =A + BT, where A and B are calculated from 
the meteorological data (Eq. (24), M is an unknown, and T and fi, are independent 
variables. 

In an extended snow cover area, we can consider that 7(&z) and ji(t, Z) are also functions 
of the point location R in the snow cover. In the spatial averaging procedure, the equations 
will be expanded around the ensemble mean of these’ two variables, hypothesizing that the 
spatial variability of the snowmelt process is mainly given by the spatial variability of 
point location variables T(?J) and P(t,_F). These two variables ate relevant in the physics of 
the melting processes. In a broad sense, it can be said that snow temperature dictates the 
direction and magnitude of most energy fluxes across the boundaries, and snow density is 
the bulk parameter that best describes the internal properties and physical state of the 
snowpack. 

3.1. Equations for the area1 means 

To simplify the averaging procedure Eq. (27) and Eq. (16) can be written respectively in 
the forms 

di’ 
-=acT+,) and 5=b(r,,) dr dr ’ 
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where the subscript s in PI is dropped for mathematical convenience in the following. 
Under ergodicity assumption, the depth averaged snow temperature t can be written in 
terms of Taylor series expansion around the areal average snow temperature (n and areal 
average snow density 6) as 

f= [a(T,o)](o)+ { ~},,,(%0)+ { y}(o)ww 

+ ;{ !5p}(o(F_(n)‘+ ;( a2[;;.)l)miQ-W2 

+ { I a2p-;)1 (~-(~))o-Q))+o[(~-(~)3,~-~))3] 
(0) 

(28) 

where the subscript (0) &notes that the function within the brackets is evaluated at the 
mean values (t =(n, p =@)), and O[] indicates the truncation error, which is of the order 
of the first omitted term. 

Considering’ that the terms within brackets take deterministic values when evaluated at 
(0), and ((T - (Q)) = 0 and (@-@)))=O, the ensemble average of the Eq. (28) can be 
written as 

(2g) 

Under the ergodicity assumption, Eq. (29) describes the behavior of the areally averaged 
snow temperature. The error involved in the approximation is of the order of the third 
moment of t and fi. Following the same procedure for the depth averaged equation of the 
rate of change in snow density an equation describing the behavior of the areally averaged 
snow density can be obtained as 

(30) 

It may be noticed that Eq. (29) and Eq. (30) depend on the variables(T). ($), Var(?), Var@) 
and Cov(t, Ji). Here, (T) is the areal mean snow temperature, Var(?‘) is the areal variance of 
the snow temperature, 6) and Var@) are respectively tbe areal mean and areal variance 
of the snow density, and Co@, p) is the areal covariance between snow temperature and 
snow density, under the ergodicity assumption. To close the system of Eq. (29) and 
Eq (30) it is necessary to develop equations for the variance and covariance terms. 
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3.2. Equations for the area1 variances 

Applying the definition of the variance, 

dVar(rf? d -* 
-= $W dt )-m*> (31) 

Expanding the right-hand side of Eq. (3 1) as a Taylor series around (n and &). neglecting 
third- and higher- order terms, and denoting a(T, p) = (d?)/(d) results in 

(32) 

Eq. (32) is an equation for the areal variance of snow temperature as a function of the Grst 
derivative of the point location snow temperature which is evaluated at the areal mean 
value. A similar procedure can be applied to the areal variance of the snow density to 
produce the following explicit equation for the areal variance of snow density under the 
assumption of ergodicity of the snow-covered region: 

d&u@) 
-= 2Var@) 

df 

where b,, p,) = 2. 

3.3. Equation for the area1 covariance 

By definition, the time derivative of the area1 covariance can be written as 

(33) 

(34) 

Expanding the right-hand side of Eq. (34) around the areal mean values in terms of Taylor 
series and applying the same considerations used for the mean and variance, results in the 
following equation for the areal covariance: 

dCov(T, P) 
dt 

=Var(?-){ ~)o+Var@){ T},, 

a[b~T,~d 

ap (0) 

(35) 

The set of ordinary differential equations, Eqs. (29), (30), (32), (33) and (35), constitutes a 
closed system which depends on areally averaged variables. This system of equations 
originates from the depth-averaged dynamics of snowmelt, expressed as a point location 
prWess. 

3.4. Freezing depth 

The freezing depth Z can be averaged over the snow cover area using the same 
Taylor expansion method. Combining Eq. (11) and Eq. (12), the expression for 2 can 
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be written as 

Expanding 2 around the areal means yields the relationship 

(z)= k(T,p)l(O) + (37) 

3.5. Solution to the mass equation 

If there is no snowmelt, i.e. whenever(T) < O‘C, Eqs. (29). (30), (32), (33) and (35) can 
be solved for (n, @), &u(7), Var@) and Cov(t, p). 

Once 6) is known at the beginning and end of a computational time interval, the depth 
averaged mass conservation equation, Eq. (26), then becomes linear with respect to the 
spatially averaged depth of the snowpack, (0) when its ensemble average (areal average 
under ergodicity) is taken. That is, the ensemble averaging of Eq. (26) under known 6) 
yields 

which is the areally averaged mass conservation equation over a snow cover area. Expres- 
sing Eq. (38) in finite differences, it can be solved for (0) at the end of the interval. If the 
solution of the equation system EIqs. (29), (30). (32), (33) and (35) results in (7) L OT, 
then the snowmelt (M) is calculated from this equation system under (7) = 0. 

4. Model fomulation 

The final formulation of the spatial approach is obtained by taking derivatives of a(&,), 
b(rp) and c(r~) with respect to t and p and substituting these derivatives into Eqs. (29), 
(30), (32), (33), (35) and (37). These operations lead to very involved algebraic expres- 
sions which will be omitted for brevity. 

It can be noticed that the point location equations am a particular case of the areally 
averaged equations system. In a point location situation the variances and covariances are 
zero and the mean spatial parameters take the point values. Consequently, the amally 
averaged system of equations is reduced to the system given by the depth averaged 
equations representing a point location process. On the other hand, when the application 
is extended over an area, the areal variables (2)). @), Var(n, Var@) and Cov(F,p) will 
adjust to the scale of the process by taking values dictated by the fluctuations in time and 
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space of the input meteorological variables and by how these areal variables are related to 
the physics of the melt process. 

The initial conditions are specified for (n, @, (0). Var(n, Var@) and Cov(F,p). The 
energy balance is calculated using areally averaged meteorological data. This information 
may come from point location observations or from any other means such as satellite 
information or mesoscale climatic models. 

The system of equations is solved using a Runge-Kutta numerical method for each time 
interval. Using Eq. (37), the area1 average snow freezing depth(z) is calculated. If (2) is out 
of the interval (0 < (z) < (D)) then (z) is forced to take the extreme admissible value of the 
interval, and (n is recalculated by Newton method applied to Eq. (37). This new value of 
(n is then used to solve the equation system for the final values of the areal variables 
during the time interval. Finally, Eq. (38) is solved for (0) at the end of the time interval. 

5. Model test@ 

The main difficulty in testing an areal-scale model is acquiring spatially distributed data 
records. Meteorological data for air temperature, relative humidity, radiation and wind 
velocity are required at several sites of the area. The area1 average of these values are the 
inputs of the areal-scale model. Additionally, distributed observations of snowmelt, snow 
temperature and snow density should be available to compare with the results obtained by 
the areal-scale model ((n, Var(n,, @), Vat@),(M)). However, some of these variables are 
not routinely observed. As a consequence, the model developed in this study had to be 
tested by the regular information available for a typical snow-covered catchment. 

The area selected for model testing was Scott Valley Basin in Northern California. Most 
of the information and data required from Scott Valley Basin were compiled in a previous 
study by Van der Heydt (1991), who applied a point location snowmelt model (which will 
be called Model L) to this area. The fact that the model developed in this study had to be 
tested by data from few observation point locations forced us to prepare three different 
tC3t.S. 

5.1. Study area characteristics 

The Scott Valley watershed is a 16002 km basin located in Northern California (Sis- 
kiyou County). The topography of the region is rugged, having elevations from 2500 m at 
the peaks to 500 m at the basin outlets. Snow accumulation occurs as a result of storms 
coming from the Pacific during winter. Snowmelt takes place during interstorm periods 
and in spring. 

There are two snow pillow sites within the basin at the southern end of the watershed, 
namely Middle Boulder 3 and Scott Mountain. A further three observation point sites 
outside the basin, at Peterson Flat, Mumbo and Big Flat, are close enough to provide valid 
information for tbe study area. At these five stations cumulative precipitation is also 
recorded. Data are registered by sensors that transmit the signal at periodic intervals via 
the Geostationary Operational Environmental Satellite to a central computer facility in 
Sacramento, California. 
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Diurnal fluctuations of snow water equivalent (SWE) readings as a result of tempera- 
ture-induced effects make a determination of the 3 h incremental melt impossible. It is 
convenient therefore to use daily incremental SWE as a representative measure of the 
snow depth variations. 

Three remote automated weather stations (RAWS) in Scott Valley Basin measure 
hourly relative humidity, precipitation, air temperature, wind speed and direction. These 
three stations are located at Collin’s Baldy (1670 m), Quartz Hill (1200 m) and Callahan 
(500 m). Additionally, at Scott Mountain air temperature is measured and recorded every 
3 h. 

Total global solar radiation is monitored at Red Bluff by Pacific Gas and Electric 
Company. A spectral pyranometer measures total horizontal solar radiation yielding 
30 min average values. Fractional sky cover and cloud base elevation are recorded at 
Redding, Siskiyou and Montague airports. 

The shortwave radiation data (SW) which were used in model testing studies, was 
prepared by Van der Heydt (1991), who calibrated a radiation model using Red Bluff 
solar radiation. The calibrated atmospheric transmissivity parameter was found to be 0.68. 
This is in agreement with Williams (1972). Subsequent adjustment to the basin was made 
possible by using Redding and Montague airport information on cloudiness. The albedo 
was computed by using an exponential decay function of albedo with time since the last 
snowfall (Kondo and Yamazaki, 1990). 

5.2. Case I: point location simulation 

The first test was directed toward validating the formulated method applied as a point 
location model. By setting the variances and covariances to zero and considering (n and 
E:asoy location variables, the result of the system will correspond to a point location 

The simulation period chosen is 6-19 April 1986, when no snow accumulation 
occurred. The model was applied to the Scott Mountain site. For this particular location, 
most of the snowmelt occurred during 6- 19 April. By 19 April snow depth had decreased 
from 39 cm to about 2 cm. The zero time for the simulation corresponds to 6 April at 
04~00. For model computations a 15 min interval was used according to the data avail- 
ability. No interpolation of the observed data (air temperature, relative humidity, wind and 
shortwave incoming radiation) was required. 

The values given to the parameters of the model were related to the conditions existing 
iu Scott Mountain during the period 6-19 April. The emissivity of the snow surface was 
taken e, = 0.99, the water content of snow at 0°C was taken as W, = 0.10 (this value was 
suggested by Kondo and Yamazaki (1990)), the bulk coefficients for turbulent transfer 
were taken as Dh = 0.0030 and D, = 0.0015 (Male and Gray, 1981), the effective thermal 
conductivity coefficients were taken as kr = 0.25 and kz = 25 in Eq. (12) (units 
cal cm-’ h-’ K-l), the viscosity coefficient was taken as q. = 20 cm h-r, and ko = 
21 cm3 g-’ in Eq. (16) (Anderson, 1976). The initial values of the state variables were 
fixed at F = - l”C, Var(T) = 0, $, = 0.38 g cms3, Var@) = 0, Cov@, i;> = 0, D = 39 cm. 

In Fig. 3, the values of snow surface temperature during the first 5 days of the simulation 
period calculated by the model developed in this study are compared with the results 
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Fig. 3. Surface snow temperature comparison. 

predicted by Model L (Van der Heydt, 1991). A periodic curve was obtained as a result of 
the incoming energy fluctuations during the day-night diurnal cycle. Although there are 
some differences in the curve shapes and magnitudes of temperature at certain points in 
time, there is a significant agreement between the two models. 

Fig. 4 shows the comparison of daily cumulative snowmelt values. According to Fig. 4, 

6 7 6 9 10 11 12 13 14 15 16 17 16 
Day of April 

Fig, 4. Comparison of snowmelt estimated by the developed model in its point location form (Calculated N), 
observed, and snowmelt estimated by Model L. 
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the simulation of the observed values at Scott Mountain site by the developed point 
location model of this study (denoted by ‘calculated N’) is satisfactory. The discrepancies 
between the snowmelt calculated by the developed model and the Van der Heydt model 
(Model L) predictions can be explained by several factors. In Model L, equations are 
solved analytically, whereas in the point location model of this study a numerical solution 
is obtained. This may be the reason for the slightly longer melting periods obtained by our 
point location model in Fig. 3 (as compared with Model L), which will contribute to higher 
snowmelt cumulative yields. During the melting periods shortwave radiation and turbulent 
transfer of heat to the atmosphere dominate the energy balance. In the turbulent transfer 
process the values of the parameters involved may be different in the two models, increas- 
ing the snowmelt calculated by our point location model. 

The general agreement between the two models and observed data confirms that the 
original point location physics representation of the melting process by our model is 
reasonably correct and the assumptions and simplifications made in the procedure are 
acceptable. In summary, it can be said that, based on the results obtained from the data 
available, the developed point location snowmelt model performed satisfactorily. 

5.3. Case 2: tests based upon area1 model simulations 

To test the areal snowmelt model it is important to compare the calculated areal mean 

- smwlunp. (c&h.) - - - - SnowTomp. (O.HiW) --- .-- -- 6nmv1mp. (C.W.) 

-S~clllah.) - - - - Snowmalt (Q.HIU) ------ Snowmelt (C 
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Fig. 5. Snowmelt (positive) and snow temperature (negative) calculated by tbe point location form of the model at 
three locations in Scott Valley Basin. 
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snow temperature, snow temperature areal variance and areal mean snowmelt with the 
cotresponding observed quantities. However, only the snowmelt is actually observed in 
the Scott Valley Basin. Consequently, a simulation of point location snow temperature 
was performed at three locations in Scott Basin by utilizing the point location model 
developed in this study. Meteorological data for air temperature, relative humidity, 
wind speed and solar radiation were available for three sites, at Callahan, Collin’s 
Baldy and Quartz Hill. The simulated snow temperature and snowmelt at these three 
locations were used to calculate the areal arithmetic average of T and h4, and the variance 
of T. Although these values were simulated by the point location model we will denote 
these averages hypothetically as ‘observed’ average 7’ and M and ‘observed’ variance of 
snow temperature. 

The areally averaged values of air temperature, relative humidity, wind velocity and 
shortwave radiation observed at these three locations were then used as input data to the 
areal snowmelt model to estimate (7). (M) and Var(T). Finally, the calculated areal vari- 
ables and those ‘observed’ ones obtained from averaging point location model simulations 
were compared. 

Fig. 5 represents the point location model calculated snowmelt and snow temperatures 
at Callahan, Collin’s Baldy and Quartz Hill. The parameter values used for the calcu- 
lations are similar to those used in Case 1. 

In Fig. 6, the areal mean value of snow temperature+ (7), obtained through the areal 
model is compared with the ‘observed’ temperature, which was obtained from averaging 

- Simul. T 

0 20 40 60 60 100 120 140 
Time (hr) 

Fig. 6. Simulated areal mean temperature, obtained from areal snowmelt model, vs. the ‘observed’ temperature, 
obtained from averaging the temperatures simulated using the point location model at three sites in Scott Valley 
Basin. 
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Fig. 7. Comparison of snowmelt calculated using the areal model (Calcul. Melt) with that calculated from 
averaging the snowmelt simulated using the point location model at three sites in Scott Valley Basin (Ohs. Melt). 

the point location model simulated temperatures at above-mentioned three locations. 
Correspondingly, in Fig. 7 calculated snowmelt is compared with the ‘observed’ snowmelt 
which was obtained from averaging the point location model simulated snowmelt at the 
three locations. In both cases there is good agreement. There is no ‘calibration parameter’ 
in the area1 model. The initial values can be adjusted within a certain interval. In this case, 
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Time (hr) 

Fig. 8. Amal mean snow density calculated using the areal model. 
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Fig. 9. Snow density ard variance calculated using the area1 model. 

the initial conditions were @)= -2.0, Var@)=4.0, ($=0.35, var(jS)=0.001, 
Cov(T, p) = 0.0. 

Analyzing the performance of the developed model, it was noticed that the effects of the 
initial values of (n, Var(~?, (J), Var@), and Cov(t, p) were very different. whereas the 
initial value of (I) influenced the first daily cycle, the initial value of @) affected the whole 
calculation period. From Fig. 8, it can be seen that @) does not have the cyclic pattern 
shown by (?j in Fig. 6. On the contrary, the smooth change of 6) is mostly due to 
compacting through time. This affects the dynamics throughout the simulation period, 
in accordance with the nature of snowmelting pn>cess. In Fig. 8, the tiny deviations of @) 
from the main exponential tendency of the curve is due to variation in (7) and can be barely 
noticed. The exponential dependence of (J) on (n, expressed in Eq. (16), is manifested 
when the same temperature persists for an extended period of time. The value of @) is also 
sensitive to Var@), which affects the rate at which 6) changes. The tendency of Vat(p) is 
to decrease with time (see Fig. 9), indicating that the compacting effect tends to cause a 
more uniform snow cover density. The range of plausible values for Var@) is of the order 
of 0.001 g cmb3 h-l. 

The temperature areal variance curves displayed in Fig. 10 show some differences in the 
magnitude of the peaks. Vat-(T) is very sensitive to the initial conditions, and perhaps there 
exist different combinations of initial values that may yield a better fit. Another considera- 
tion is the number of point locations from which the ‘observed’ variance is estimated. 
Three sites is a low sample number. Also, they may not be completely representative of the 
watershed or the area covered by the input data. However, the shape of both curves, their 
trend and location of the peaks are in agreement. 

The areal covariance of snow density with snow temperature has a fluctuating pattern 
(see Fig. 11). Although the values taken by the covariance are low in magnitude, they 
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Fig. 10. Comparison of snow temperature areal variance calculated using the areal model (Simul. VART) with 
that calculated from the snow temperatures siktlated using the point location model at three sites in Scott Valley 
Basin (Ohs. VarT). 

affect the dynamics. The covariance may be ignored in the perturbation procedure, 
approximating the snowmelt physics equations by only considering the variance terms. 
However, in that case (setting Cov(fi, P) =0 and ignoring the equation for the covariance) 
it was seen that stability problems occur, causing Var(n to take negative values, which in 
turn leads to divergence problems. 

0 20 40 60 80 100 120 140 
Time (hr) 

Fig. Il. Areal covariance of snow density with snow temperature calculated using the areal model. 
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The discrepancies observed between the curves in Fig. 7 occur mainly at the beginning 
and end of a melting cycle. The reason for this may be related to the assumption that melts 
occur only when (n = 0. This is true at a point location scale but may not be true at amal 
scale. Some snowmelt can be expected even when (7) is below freezing, especially when 
the mean temperature is close to the freezing temperature. 

5.4. Case 3: area1 model predictions vs. observations 

A more realistic application was carried out to test the areal model’s performance. All 
the information available for the Scott Valley Basin area were used to compare observed 
areally averaged snowmelt with the areal mean snowmelt calculated by using the method 
developed in this study. The developed area1 model used as its input the averaged meteor- 
ological data for the basin, and the results were compared with areally averaged observed 
snowmelt for the area. 

The calculation period used was again from 6 April at 04:OO h to 18 April at 12:OOh. 
and the computational time interval was fixed to be 15 min. The variability of the observed 
snowmelt in time and space over the Scott Valley Basin study area is shown in Fig. 12. 
Four out of five stations present similar values whereas the Middle Boulder station sig- 
nificantly exceeds the others in magnitude. Given that no information exists on how 
representative these observation sites are of the Scott Valley Basin area, Middle Boulder 
was included in the averaging with the same weight as the other stations. 

Several runs were performed to find the best combination of initial values to fit the daily 
cumulative observed and five-station areally averaged snowmelt. In the calibration 
process, emphasis .was put on the initial conditions rather than on the parameter values 
such as bulk turbulent transfer coefficients D, and D,,, albedo coefficient, and snow water 

61 Scott Mount. 

6 7 6 9 10 11 12 13 14 15 16 1.7 16 
April. 19.39 

Fig. 12. Observed snowmelt at five stations in the Scott Valley Basin study area 
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content W,. Much can be said about the parameterization of the snowpack properties and 
the energy fluxes. The parameter values can always be improved, depending on the 
accuracy and spatial density of the input data and the observed output variables. However, 
we will concentrate on the results related to the spatial features of the model, the 
central topic of this research. Consequently, the parameter values were taken from the 
literature. 

During the calibration runs, it was observed that increasing the initial value of $) 
produces lower peaks in (0 and Var(Q. An increase of density is associated with a 
quadratic increase in thermal conductivity. In a more conductive medium, a deeper 
snow layer becomes active, keeping the fluctuations in temperature within a smaller 
range. As a consequence, a decrease in Var(T) may be expected when snow density 
increases. 

It was also observed that Var(T) is very sensitive to the initial values of Var(p). Increas- 
ing Var@) by 0.001 results in high peaks of Var(Q. Again, this effect seems to be 
controlled by the relation between b and A,, which turns out to be very important in the 
spatial dynamics. By adjusting the initial values it was possible to reproduce fairly well the 
areally averaged observed snowmelt. 

In Fig. 13, the areal model predicted and observed areally averaged daily cumulative 
snowmelt are. displayed. According to this figure there is good agreement between pre- 
dicted and observed daily melts. However, the area1 model predictions, in general, under- 
estimate the observed areally averaged snowmelt. The observed snowmelt during the 
study period accumulates to 49 cm whereas the predicted value is 46 cm. This difference 

?? Obs. Melt sl Calc. Melt 

6 

5 

0 
6 7 8 9 10 11 12 13 14 15 18 17 18 

Time (day) 

Fig. 13. Comparison of measured areally averaged (five station averaged) snowmelt (Ohs. Melt) with the areally 
averaged snowmelt pdictd using the areal model (Calc. Melt). 
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Fig. 14. Model calculated are& average snow temperature at Scott Valley Basin. 

may be caused by several factors such as incorrect parameter values, measurement errors 
and the assumption stipulating that snowmelt occurs only when (2’) = 0°C. 

At the ninth simulation day (approximately 190 h) the snow temperature (Fig. 14) is 
maintained at 0°C during the night. This is a particularly long period during which the 
snow stayed at the same temperature, altering the compacting rate, and producing a visible 
effect in the snow density curve (Fig. 15). 

According to Fig. 13, the areal model seems to be capable of simulating the areal 
average snowmelt for the conditions presented in Scott Basin. Eventually, a better fit 
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Fig. 15. Model calculated ad average snow density at Scott Valley Basin. 
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Fig. 16. Comparisons of observed areally averaged snowmelt (Ohs. Daily avg.) and areal mean snowmelt 
predicted by areal model (Spatial eqs.) and point location model (Point eqs.). 

could be obtained by developing a parameter estimation scheme based upon topo- 
graphical data, satellite information, wind profiles, stability parameters, vegetation, 
etc. However, the information which was available and which was utilized in the 
application of the area1 model is the usual data a hydrologist would have for any real- 
life situation. 

Finally, a comparison of areally averaged snowmelt resulting from the observations, 
from the areal model and from the point location modeling approach was ma&. For this, 
the same input data as used to calculate OM) were also applied to estimate M at a point 
location by considering the area1 variance and covariance terms as zero. The point location 
modeling represents the traditional approach in which the snowmelt is estimated by using 
the point location physical relationships under spatially distributed inputs. Point location 
model predictions of snowmelt were first obtained at the five above-mentioned sites in 
Scott Valley Basin. Then these site-specific predictions were averaged over the five sites to 
obtain areally averaged predictions of snowmelt in Scott Valley Basin by the point loca- 
tion modeling approach. 

In Fig. 16 the observed, the areal model calculated and point location model calculated 
areal mean daily snowmelt values can be compared. The accumulated value for M calcu- 
lated by the point location modeling approach during the simulation period sums to 39 cm, 
which is below the other ttio cumulative values (46 for areal model and 49 for observa- 
tions). From this comparison it may be deduced that the cumulative daily snowmelt 
predictions from the areal model are equal to or better than the corresponding predictions 
from the point location modeling approach. 
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6. Concluding remarks 

The following conclusions and recommendations for future investigations may be 
stated: 

1. The results of the areal model developed in this study are in agreement with the 
observed data. The magnitude and trend of the measured daily snowmelt (basin 
averages) are reproduced satisfactorily by our areal model. Also, the developed 
model performs well as a point location model when its results are compared with 
observed point location snow water equivalent (SWE) data and with the results from 
another point location model. Therefore, the model performs well, independently of the 
spatial scale of application, i.e. either at point location scale or at area1 scale. 

2. There is evidence that the ateal model captures the spatial variability of the snow cover. 
The areal snow temperature variance from the developed model agrees with the amal 
temperature variance estimated by point location simulations. The areal model includes 
the spatial variability of snow temperature and snow density in the snow cover. This is 
an important departure from the traditional point location application. Consequently, 
the results obtained by the area1 model differ from those obtained by the traditional 
point location model. Better concordance with areal observations is obtained by the 
areal model. 

3. Although the results of the areal model are in agreement with the observed data, the 
model still needs to be tested over a wide range of snow cover and climate conditions. 
In addition, reliable hourly SWE data are necessary for comparison with model results 
at time scales appropriate for the snowmelt dynamics. A large number of observation 
points that provide meteorological and snow cover data are essential for a conclusive 
validation of the developed approach. An intermediate spatial scale of application 
between point location and basin area1 scale is necessary to evaluate how the area1 
model depends on the spatial scale of the simulation. 

4. The averaging procedure applied in this study to the snowmelt processes allows for the 
modifications to the method utilized in estimating the energy balance. There is a wide 
range of available energy budget techniques, depending on which components of the 
budget are measured directly and which empirical ‘equations are used to estimate the 
other components. Depending upon the purpose of the application and on the available 
data, other techniques may be more adequate than the energy budget method which was 
used in this research. For example, a temperature in&x approach may be used when 
only air temperature measurements are available. 

5. The movement of water within the snowpack is neglected in this study. The assumption 
of instantaneous release of water out of the pack is not very realistic. To make it more 
realistic, an expression for the flow moving through the snow needs to be added in the 
future to the snowmelt models which were developed in this study. The flow of water 
through the snow is subject to properties that depend on the metamorphic state of the 
snow. This makes it difficult to estimate the flow. At present, the developed models 
circumvent this problem by calculating a mean freezing depth which separates dry and 
wet snow layers. The freezing depth defines a boundary condition for the water that 
flows in the wet layer. 
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6. Future research is necessary to determine when, where, and how the snow cover area 
should be subdivided, so as to make better use of the areal snowmelt model. Although 
the equations are expressed as functions of the spatial variability of the main physical 
properties of the snow cover, some differences in the characteristics of the snow cover 
area may justify subdivision of the study area. Seasonal and perennial snow covers are 
subject to different rates of compaction and different density-heat conductivity rela- 
tionships. Climatic differences on the windward and leeward sides of a mountainous 
system should also be considered. Even shortwave radiation captured by the snow may 
be very dissimilar from one snow cover area to another, owing to differences in albedo, 
exposure or vegetation. Therefore, it is important to establish criteria for considering 
which characteristic should be preserved in a ‘homogeneous unit’ of the snow cover 
area. Obviously, a subdivision of the study area is also subject to the availability of data 
representative of each partition. Nevertheless, with the same amount and quality of 
information the developed areal model provides better results than the traditional point 
location approach. 
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